ΕΠΛ 427: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ (MOBILE NETWORKS)

Δρ. Χριστόφορος Χριστοφόρου Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής

UMTS Network and Radio Resource Management Δίκτυο UMTS και Αλγόριθμοι Διαχείρισης Ασύρματων Πόρων

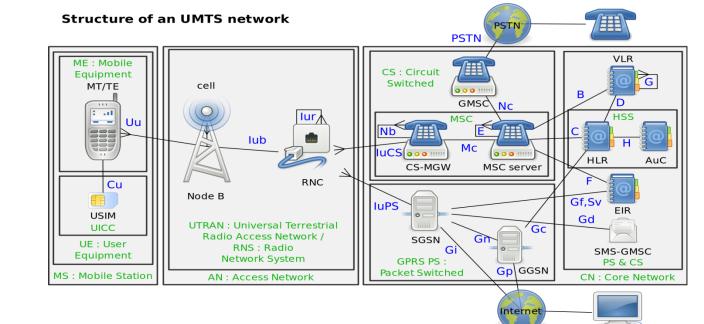
Lecture Overview

1

UMTS Network

- Introduction
- Architecture
- W-CDMA (Wideband-Code Division Multiple Access)

Radio Resource Management (RRM)


- Power Control
- Handover Control
- Admission Control
- Load Control
- Packet Scheduling

- The Universal Mobile Telecommunication System (UMTS) is a 3rd Generation (3G) wireless system that utilizes a higher bandwidth (i.e., 5 MHz Bandwidth) than previous generation networks to deliver packet data and voice services to mobile users and also provide access to the web, with high data rates.
 - Frequency bands indented for use on a worldwide basis for UMTS are around to 2 GHz
 - Uplink: 1885-2025 MHz , Downlink: 2110-2200 MHz
 - In the US, 1710–1755 MHz and 2110–2155 MHz will be used instead, as the 1900 MHz band was already used.

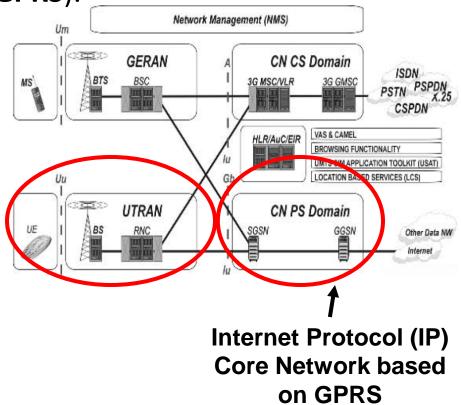
- UMTS air interface is based on W-CDMA (Wideband-Code Division Multiple Access; 5MHz carrier bandwidth used), with the following Bit rates achieved (for initial Release 99 specs):
 - 144 Kbits/s in high mobility (vehicular) traffic
 - 384 Kbits/s for pedestrian traffic

3

2048 Kbits/s for indoor and low range outdoor

 Greater Speeds Achieved with Latest Releases
 HSPA (WCDMA based)
 HSPA+ (WCDMA based)
 LTE (OFDM based)

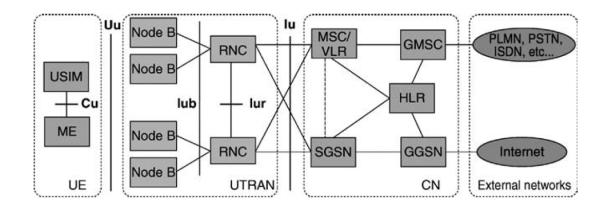
- LTE Advanced (OFDM based)
- With LTE and LTE Advanced, OFDM is adopted in the air interface, instead of W-CDMA


Radio interface	Peak downlink rate		
W-CDMA	Up to 384kbps		
HSPA	Up to 14.4Mbps		
HSPA+	Up to 42Mbps		
LTE	Up to 45Mbps (5MHz) Up to 326Mbps (20MHz)		
LTE- Advanced	Up to 1Gbps downlink (using up to 50MHz)		

- In contrast with the previous Generation Mobile Networks (e.g., GSM, GRPS, etc.), UMTS supports four different QoS classes of services with different priority based on QoS parameters (e.g., Guaranteed bit rate, Maximum Delay, Maximum BER, etc.)
 - Conversational: Real Time services like Voice Call, Video Call, Video Gaming, etc.
 - Streaming: Real Time services like Video and Audio streaming, Mobile TV, etc.
 - Interactive: Non Real Time services like Web browsing, Database Access, etc.
 - Background: Non Real Time services like Emails, MMS, Downloading, etc.

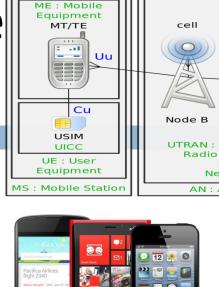
- UMTS evolved from Global Systems for Mobile communications (GSM) and it has an Internet Protocol (IP) Core Network based on General Packet Radio Service (GPRS).
- 3G Networks radio access equipment as such, are not compatible with GSM equipment.

6


A new part that will maintain the 3G connections (i.e., the W-CDMA connections) in the radio interface is required (UMTS Terrestrial Radio Access Network (UTRAN))

UMTS Network Architecture

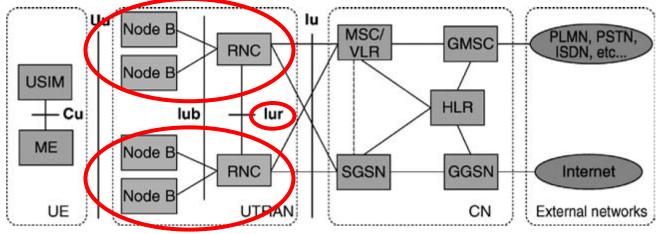
7


- The main components of a UMTS system are:
 - The Core Network (CN), which is responsible for switching and routing calls to the users, as well as data connections to other external networks (all calls go through the CN).
 - The UMTS Terrestrial Radio Access Network (UTRAN) that handles all radio-related functionality (e.g., Radio Resource Management)
 - The User Equipment (UE) that is the interface between the user and the Network (through the Node-B).

UMTS Network Architecture User Equipment (UE)

The User Equipment (UE) consists of two parts:

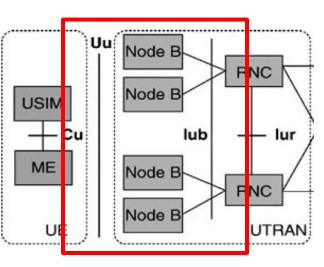
- The Mobile Equipment (ME) is the radio terminal used for radio communication over the Uu interface (this is the interface implementing the WCDMA physical channels between the UE and the Node-B).
- The UMTS Subscriber Identity Module (USIM) is a smartcard that holds the subscriber identity (i.e., the IMSI), performs authentication algorithms, and stores authentication and encryption keys and some subscription information that is needed at the terminal.



UMTS Terrestrial Radio Access Network (UTRAN)

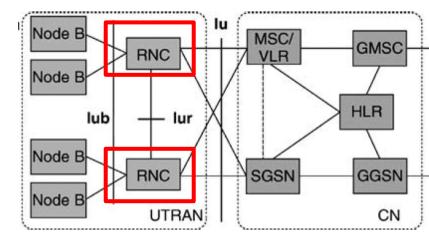
The UTRAN is divided into Radio Network Subsystems (RNSs).

- One RNS consists of a set of radio elements called Base Stations (or officially Node-Bs) and their corresponding controlling element that is called Radio Network Controller (RNC)
- The RNSs are communicating with each other through lur interface, forming connection between two RNCs. This lur open interface carries both signaling and traffic information (for example during a Soft Handover).



UMTS Network Architecture UTRAN – Base Station (or Node-B)

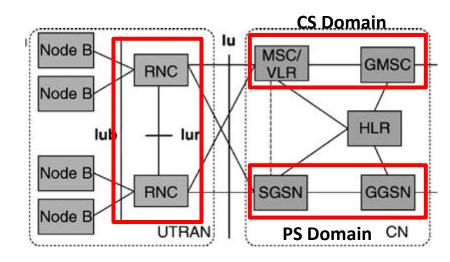
- The main task of the Node-B is to establish the physical implementation of the Uu interface (communication with UE) and the implementation of lub interface (communication with RNC).
 - Realization of the Uu interface means that the Node-B implements WCDMA radio access Physical Channels based on some parameters determined by the RNC (e.g., QoS parameters required, Channel data rate, Spreading Code, etc.)
 - In other words the WCDMA Physical Channels form the physical existence of Uu interface between the UE and the UTRAN.


10

The WCDMA physical channels exist in the Uu interface, and thus the RNC is not necessarily aware of their structure at all.

UMTS Network Architecture UTRAN – Radio Network Controller (RNC)

- The Radio Network Controller (or RNC) is a governing element in the UTRAN and responsible for controlling the radio resources of the Node-Bs that are connected to it.
- The major functionality of the RNC is the Radio Resource Management (RRM).
 - The RRM is a collection of algorithms used to guarantee the QoS of the radio connections by efficient sharing and managing of radio resources.


UMTS Network Architecture UTRAN – Radio Network Controller (RNC)

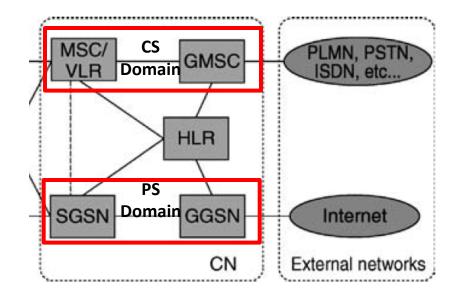
The RNC, through the lu Interface, connect to:

12

The MSC (Mobile Switching Centre), in the Circuit Switched (CS) Core Network

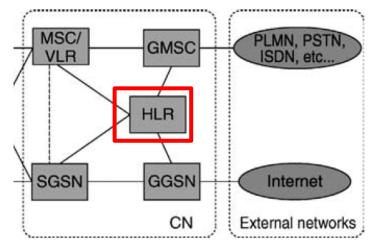
The SGSN (Serving GPRS Support Node), in the Packet Switched (PS) Core Network.

UMTS Network Architecture UTRAN – Radio Network Controller (RNC)

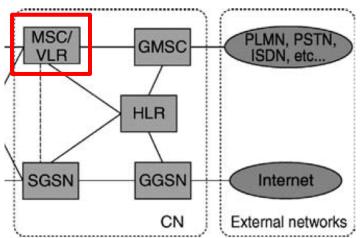

Question: Why both **lub** and **lu intefaces** need to exist in the system?

Answer:

- These two interfaces (lub & lu) exist in the system because lu is more stable in nature than the lub.
- This is due to the fact that RNC must reconfigure the lub inteface every time the UE moves from one Cell to another, while the lu inteface remains stable. The lu interface will need to be reconfigured, only when the UE moves into a Cell that belongs to another RNC.

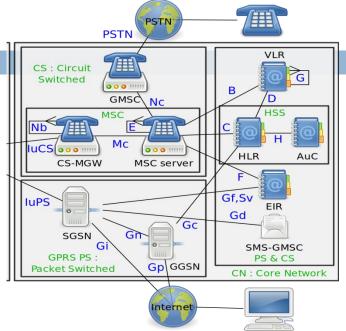

- The main elements of the Core Network are as follows:
 - Home Location Register (HLR) (Both CS and PS Domain)
 - MSC/VLR (In the CS Domain)
 - GMSC (In the CS Domain)

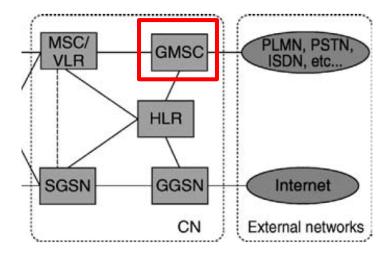
- SGSN (In the PS Domain)
 - Considers the VLR in the CS Domain
- **GGSN (In the PS Domain)**



Home Location Register (HLR)

- A database located in the user's home system that stores the master copy of the user's service profile.
- For the purpose of routing/switching incoming transactions (i.e., calls) to the UE, the HLR also stores the UE's location on the level of VLR.

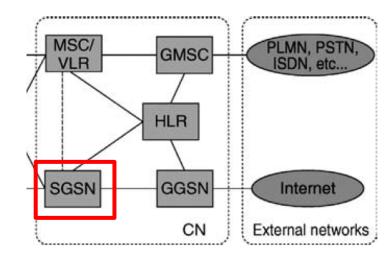

- Mobile Switching Centre/Visitor Location Register (MSC/VLR)
 - Serves the UE for CS services (i.e., voice calls, SMS).
 - The MSC function is used to route/switch the incoming CS transactions to the UE (by consulting the VLR)
 - The VLR holds a copy of the visiting user's service profile, as well as more precise information on the UE's location within the serving Network.



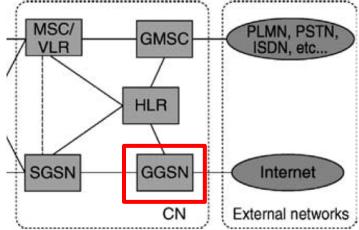
17

Gateway MSC (GMSC)

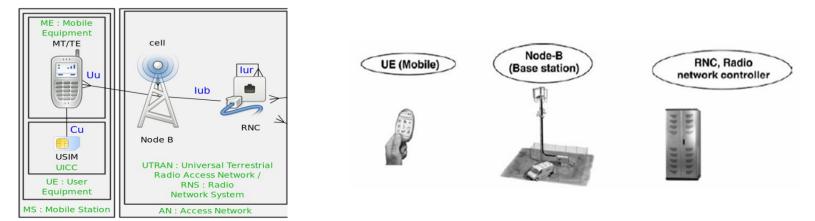
- Is the switch at the point where UMTS PLMN (Public Land Mobile Network) is connected to other external CS Networks.
- CS Networks provide connections for CS services, like the existing telephony service (e.g., the Public Switched Telephone Network (PSTN) and other PLMNs).
- All incoming and outgoing CS connections (i.e., voice calls, SMS, etc.) go through GMSC.



Serving GPRS Support Node (SGSN)

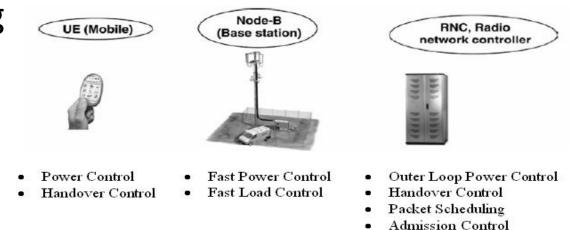

18

Serves the UE for Packet Switched (CS) services (i.e., VoIP, Streaming Video, Gaming, Internet Services, etc.)
 The SGSN function is used to route/switch the incoming PS transactions to the UE (the current location of the UE is acquired from the VLR)



Gateway GPRS Support Node (GGSN)

- Is the switch at the point where the UMTS Network is connected to external PS networks (i.e., the Internet).
- PS Networks provide connections for packet data services. The Internet is one example of a PS network.
- All incoming and outgoing PS connections go through GGSN.


- 20
- The Radio Resource Management (RRM) is a responsibility solely taken care of by the UTRAN.
- RRM is located in the Node-B and the RNC inside the UTRAN but also in the UE.
- The control protocol used for this purpose (e.g., to exchanged signalling) is the Radio Resource Control (RRC) protocol.

- 21
- More specifically RRM contains a set of algorithms devoted to:
 - Achieve optimal usage of the radio interface resources
 - Guarantee Quality of Service (QoS)
 - Maintain the planned coverage area
 - To increase the Network capacity

22

- The family of RRM algorithms can be divided into:
 - Power Control
 - Handover Control
 - Admission Control
 - Load Control
 - Packet Scheduling

Load Control

- Connection based functions:
 - Power Control (PC)
 - Controls the transmission power used by the UE and the BS in order to keep the interference levels at minimum in the air interface.
 - Handover Control (HC)
 - Provide continuity of mobile services to a user traveling over cell boundaries in a cellular infrastructure.

24

Network based functions:

- Admission control (AC)
 - Handles all new connections requests by checking whether a new connection can be admitted to the system.
 - Has the function to provide resources for new call requests or regulate resources for already ongoing calls (e.g., in case of congestion)
 - Occurs when a new call is set up, and also during handovers (as a new connection will be required in the new cell).

Load Control (LC)

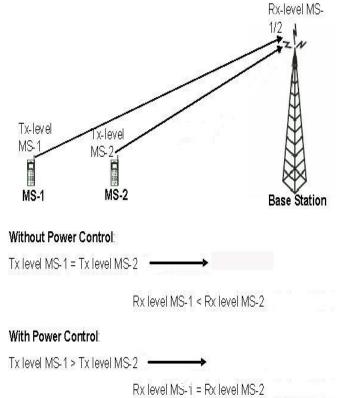
- The main objective of Load Control is to ensure that the network is not overloaded and remains in a stable state.
- Manages situation when system load exceeds the threshold and some counter measures have to be taken to get system back to a feasible load.

Packet Scheduling (PS)

The main objective of Packet Scheduling is to control the traffic in the network by regulating how much bit rate an application is allowed, by giving priority to packets according to the type of service, mainly by controlling Non Real Time (NRT) traffic (e.g., provides the appropriate radio resources, etc.)

26

 Packet Scheduling, Admission Control and Load Control algorithms work together in order to prevent the Radio Network from congestion (Συμφόρηση) and maintain the requested QoS.


1	AC	LC	PS	
overload stateno new RABPrxTarget+PrxOffset or PtxTarget+PtxOffset perventive stateDrop RT bearersPrxTarget+PtxOffset perventive stateonly bew RT bearers if RT load below PrxTarget/ PrxtargetPrxTarget or PtxTarget normal stateAC admits RABs normally	RAB	overload actions	decrease bit rates NRT bearers to FACH drop NRT bearers	RT: Real Time
	preventive load control actions	no new capacity request scheduled bit rate not increased	NRT: Non Real Time	
		no action	PS schedules packet traffic normally	•

Power Control (PC)

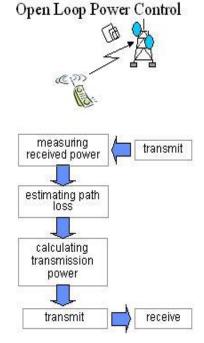
- 27
 - Power Control is one of the most important functions in WCDMA, especially in the Uplink
 - Without it, a single overpowered Mobile Station could block a whole Cell.
- The main reasons for implementing Power Control are:
 - The Near-Far problem
 - The interference depended capacity of W-CDMA
 - The limited power source of the UE (Battery)

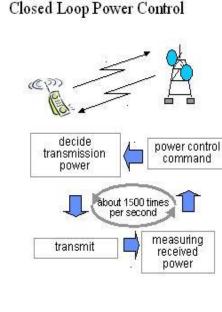
Power Control (PC) The Near-Far Problem

- MS-1 and MS-2 operate within the same frequency, separable at the Base Station only by their respective Spreading Codes.
- MS-1 at the cell edge suffers a path loss, say 70 dB above that of MS-2 which is near the Base Station.
 Rx-level MS-1/2 J
- If there were no mechanism for MS-1 and MS-2 to be Power Controlled to the same level at the Base Station, MS-2 could easily overshout MS-1 and thus block a large part of the cell
 - The optimum strategy in the sense of maximizing capacity is to equalize the received power per bit of all Mobile Stations at all times (Target SIR).

Power Control (PC)

- Power Control is employed in both in the Uplink (UL) & in the Downlink (DL)
 - Uplink Power Control: The Power Control Algorithm running in the BS determines the Uplink transmission power of the UE
 - Downlink Power Control: The Power Control Algorithm running in the UE determines the Downlink transmission power of the BS




Power Control (PC)

30

- To efficiently manage the power control in WCDMA, the system uses two different defined Power Control mechanisms:
 - Open Loop Power Control (OLPC)
 - Closed Loop Power Control (CLPC)

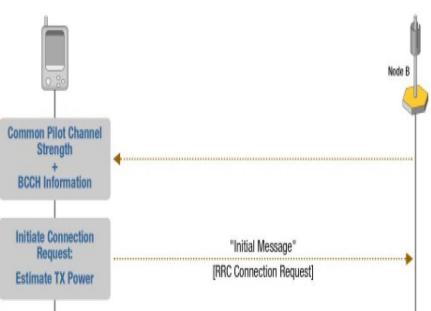
OLPC: Performed only once and this is when the UE is requesting Access to the Network. Then CLPC takes place.

CLPC: Performed continuously, once the connection of the UE with the Base Station is established.

Open Loop Power Control

31

CPICH (Common Pilot Channel)

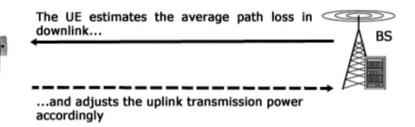

This (downlink) channel is received by all the UEs within the cell. Used for synchronization purposes, between the MS and the BS. It is also used by the UE for channel signal quality estimation reference. In order for all the UEs to be able to decode this channel, a Pre-defined bit sequence (i.e., using a Pre-Defined Spreading Code) with a fixed length (Spreading Factor (SF) = 256) is used.

Target SIR

Defines the minimum level that the signal power should have over the noise and interference so as for the receiver to be able to decode the signal correctly.

Open Loop Power Control (OLPC)

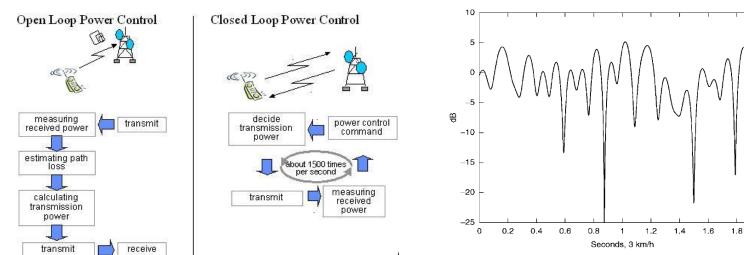
- This kind of Power Control is useful for determining the initial value of the transmitted power that will be used when a UE is requesting access (i.e., connection) to the Network.
- The UE measures the (Downlink) CPICH Signal Strength and roughly estimates the Uplink Channel Conditions (i.e., estimates the path loss that the signal will experience during propagation in the uplink)
 Based on this assessment and some other info received from the Network
 (broadcasted in the BCCH), the UE roughly estimates the initial transmission power that will be required to send "Connection Request" to the Node B



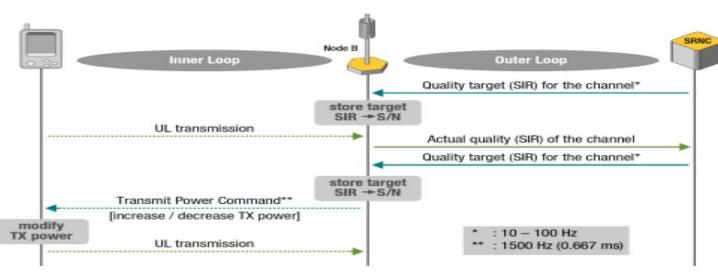
Open Loop Power Control (OLPC)

- 33
- Open Loop Power Control mechanisms attempt to make a rough estimation of the Uplink Channel Conditions (i.e., the path loss that the signal will experience in the uplink) by measurements performed on the Downlink CPICH Signal Strength.

UE


Based on this estimation, the UE adjusts its uplink transmission power accordingly.

- Such a method would be far too inaccurate.
- The prime reason for this, is that the pathloss experienced on the signal is essentially uncorrelated between Uplink (1920 1980 MHz) and Downlink (2110 2170 MHz), due to the large frequency separation of uplink and downlink bands of WCDMA FDD mode.


Open Loop Power Control (OLPC)

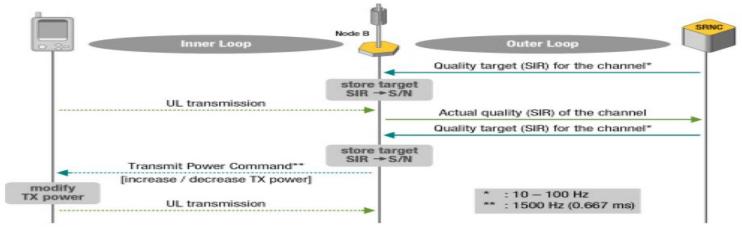
- 34
- Thus, Open Loop Power Control alone is neither adequate nor accurate for adjusting the UE transmission power during the connection.
- In order to more efficiency and more accurately compensate the rapid changes in the signal strength (caused at the receiver, mainly due to Fast fading), once the connection is established, Close Loop Power Control is essential.

Closed Loop Power Control (CLPC)

- 35
- Once the connection is established, the CLPC takes place in order to determine the Uplink and Downlink transmission power used during the connection. It includes:
- Closed Loop Power Control includes:
 - Inner Loop Power Control (or Fast Power Control)
 - Outer Loop Power Control (or Slow Power Control)

Uplink case: BS adjusts the transmission power of UE

Closed Loop Power Control (CLPC)


- 36
- The Inner and Outer Loop Power Control work together, in order to keep the Target SIR in a minimum but always acceptable level and thus: Reduce Bit Error Rate Reduce transmission power levels required by the Ms and the BS to the minimum Increase the Terminal's (UE) Battery-life Increase the overall system capacity (by
 - **minimizing the uplink** and **downlink interference caused**)

Closed Loop Power Control (CLPC)

37

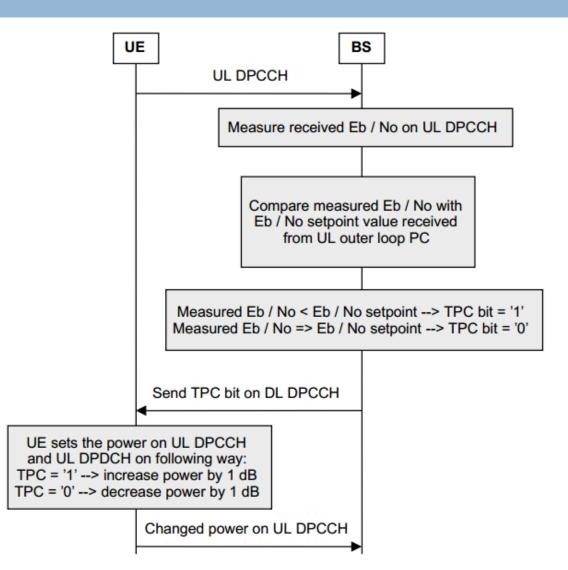
Uplink Closed Loop Power Control Example:

- Inner Loop → Runs between the UE and the Node-B. The Node-B compares the signal quality (measured SIR) receive from the UE with the Target SIR and commands the UE to increase or decrease its transmission power accordingly
- Outer Loop → Runs between the Node-B and the RNC. Every time a frame is received by the NodeB (from the UE), this frame is forwarded to the RNC. The RNC checks the quality of that frame (i.e., if it is received correctly or not) and sets the new Target SIR. This new Target SIR is provided to the Node-B to be considered during the Inner Loop Power Control.

Closed Loop Power Control (CLPC)

Inner Loop Power Control

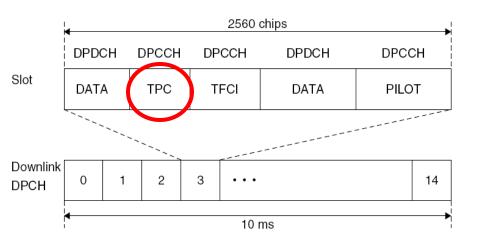
- Adjusts the transmission power used by the UE (in the Uplink) and the Base Station (Downlink) based on a Target SIR* value.
- Performed with a frequency of 1500Hz (1500 times per sec)
- Outer Loop Power Control
 - Sets the Target SIR for the Inner loop Power Control
 - Performed with a frequency of 10–100Hz (10-100 times per sec)


* Target SIR defines the minimum level that the signal power should have over the noise and interference so as for the receiver to be able to decode the signal correctly.

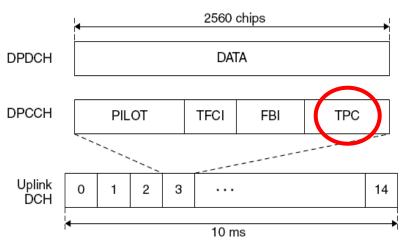
Inner Loop Power Control Uplink

- The Base Station measures the Signal-to-Interference Ratio (SIR) of the signal received from the UE and compares it to the Target SIR (this value is set by the Outer Loop Power Control).
 - If the measured SIR is higher than the Target SIR, the Base Station will send a Transmission Power Command (TPC) to the Mobile Station to reduce its transmission power
 - If the measured SIR is lower than the Target SIR it will command the Mobile Station to increase its transmission power.

Inner Loop Power Control Uplink

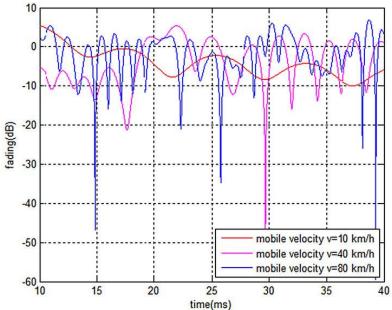

Inner Loop Power Control Downlink

- □ In the **Downlink**, the **roles** of the **BS** and the **UE** are **interchanged**.
 - The UE measures the received Signal-to-Interference Ratio (SIR) of the signal received from the BS and compares it with the Target SIR and sends the Transmission Power Command (TPC) to the BS to adjust its transmission power accordingly.
 - On the **Downlink** though, the **motivation is different**:
 - On the downlink there is No Near–Far problem, due to the Oneto-Many scenario. All the signals within one cell originate from one Base Station to all mobiles.
 - It is, however, desirable to provide additional power to Mobile Stations at the cell edge, as they suffer from increased othercell interference.
 - Also is used for enhancing weak signals caused by Fast Fading.

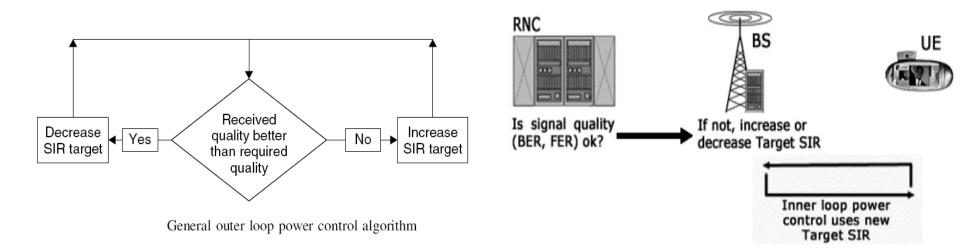

Inner Loop Power Control

42

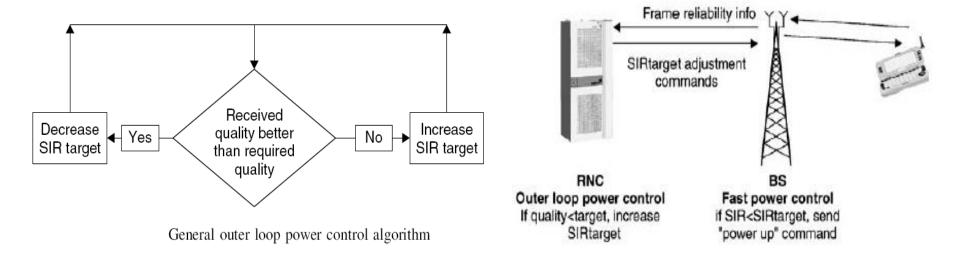
- Inner Loop Power Control is executed with a cycle of 1.5 kHz (1500 times per second – One per slot) for each Mobile Station (1dB to 2dB increase/decrease step for every TPC command)
 - Open Loop Power Control is executed with a cycle of 10-100 Hz (10-100 times per second – E.g., one per frame) for each Mobile Station. The size of the WCDMA frame is equal to 10ms.


Downlink Dedicated Physical Channel (Downlink DPCH) control/data multiplexing

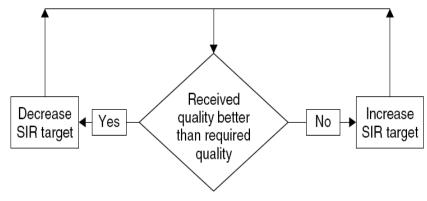
Uplink dedicated channel structure


Inner Loop Power Control

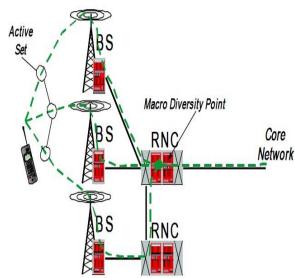
- Inner Loop Power Control operates every 0.666 ms (once every slot; 10ms frame/15 slots per frame)
 - Faster than any significant change of path loss could possibly occur on the signal at the Receiver, and
 - Faster than the speed of Fast Fading for low to moderate mobile velocity.
- Thus with Inner Loop Power
 Control, only very little residual
 fading is left and the channel
 becomes an essentially non-fading
 channel as seen from the Receiver
 (Base Station or the UE).



44


The Outer Loop Power Control is needed to keep the quality of the communication at the required level by setting the Target SIR for the Inner Loop Power Control.

- In the Uplink, the Base Station tag each data frame received by the UE with a Frame Reliability Indicator and forwards the frame to the RNC.
 - The Frame Reliability Indicator value is estimated based on the Cyclic Redundancy Check (CRC) result obtained during decoding of that particular user data frame.



- If the Frame Reliability Indicator value indicates to the Radio Network Controller (RNC) that:
 - The transmission quality is ok (i.e., there are not any errors in the frame received), the RNC in turn will command the Node-B to decrease the Target SIR by a certain amount.
 - The transmission quality is below the one required (i.e., there are errors in the frame received), the RNC in turn will command the Node-B to increase the Target SIR by a certain amount.

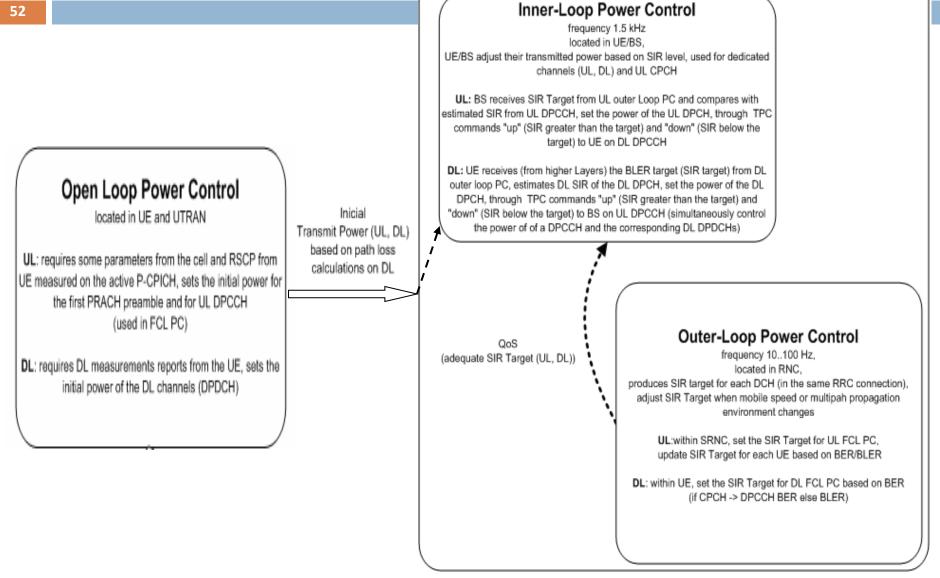
General outer loop power control algorithm

- In the Uplink, the reason for having Outer Loop Power Control reside in the RNC and not in the Node-B is that this function might be performed after a possible Soft Handover (which allows concurrent connection with more than one Base Station).
- In the Downlink the Outer Loop Power Control performed in the UE follows the same concept.
 - However, in the Downlink both Inner and Outer Loop Power Control runs in the UE, since during Soft Handover, all the frames received by the concurrent connections are received from one unit (the UE)

48

- As illustrated in the figure below, the average SIR Target value is not fixed but depends on the environment used:
 - The lowest average SIR Target (or Eb/No Target) is needed in the Non-fading channel and
 - The highest average SIR Target is needed in the ITU Pedestrian A channel with high UE speed (120Km/h).

Multipath	UE speed (km/h)	Average E_b/N_0 target (dB)
Non-fading	_	5.3
ITU Pedestrian A	3	5.9
ITU Pedestrian A	20	6.8
ITU Pedestrian A	50	6.8
ITU Pedestrian A	120	(7.1)
3-path equal powers	3	6.8 7.1 6.0
3-path equal powers	20	6.4
3-path equal powers	50	6.4
3-path equal powers	120	6.9

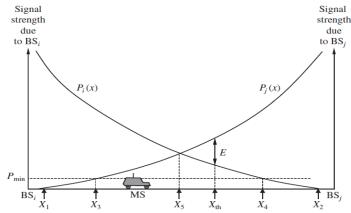

Average SIR targets in different environments

- 49
 - Why should there be a need for changing the Target SIR set-point during time?
- The Target SIR required for receiving the signal correctly depends on:
 - UE velocity (i.e., pedestrian, vehicular, high vehicular)
 - Multipath Profile (based on the propagation environment)

- 50
- For fading channels and with higher mobility speeds, the Target SIR needs to be higher to provide the required quality.
 - If we were to select a fixed Target SIR of 5.3 dB according to the non-fading channel, the frame error rate of the connection would be too high in fading channels and speech quality would be degraded.
 - If we were to select a fixed Target SIR of 7.1 dB, the quality would be good enough but unnecessary high powers would be used in most situations (waste capacity).
- Thus we can conclude that there is clearly a need to adjust the Target SIR of the Inner loop power control by Outer Loop Power Control.

- Setting the Target SIR for the worst case (i.e., high mobile speeds and areas with a lot of high buildings, etc.) one would waste much transmission power for those connections with better channel conditions in the same cell (i.e., at low mobile speeds and open space area).
- On the other hand, setting the Target SIR for the best case, this would mean bad quality of those connections with worse channel conditions in the cell (i.e., at high mobile speeds and areas with high buildings)
- Thus, the best strategy is to let the Target SIR set-point float around the minimum value that just fulfils the required Target quality (i.e., the signal should have the minimum power required to be received by the receiver for decoding the signal correctly)

Interaction between Open and Close PC Algorithms



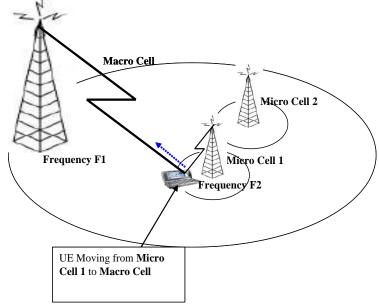
Handover Control

- Handover Control aims to provide continuity of mobile services to a user traveling over cell boundaries in a cellular infrastructure.
- For a user having an ongoing communication and crossing the Cell's edge, it is more favorable to use the radio resources in the new cell (Target cell), because the quality of the signal strength perceived in the "old" cell (Current cell) is decreasing as the user moves towards the Target cell.
 - The whole process of tearing down the existing connection in the Current cell and establishing a new connection in the Target cell is called "Handover".

Handover Reasons

- The basic reason behind a Handover is that the connection does not fulfil the desired QoS criteria set anymore and thus either the UE or the UTRAN initiates actions in order to improve the connection.
- **Overall, the reasons behind a Handover can be due to:**
 - Signal Quality Received by the UE (Main Reason)
 - The UE continually measures the signal strength received from its Serving Cell (as well as the signal quality of its Neighbouring cells) aiming to detect any signal deterioration.
 - When the quality or the strength of the radio signal falls below certain parameters set by the RNC, a Handover is initiated (by the UE).

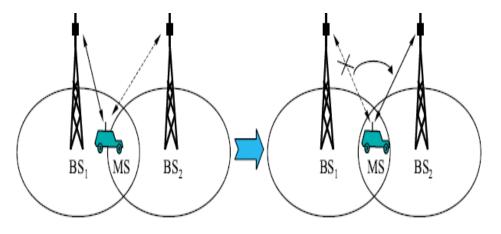
Handover Reasons


Traffic level in a cell

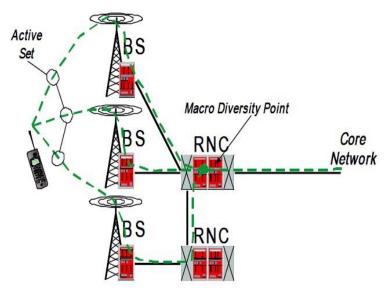
- A Handover is initiated (by the Network) when the intra-cell traffic is approaching the maximum cell capacity or a maximum threshold.
- This sort of Handover helps to distribute the system load more uniformly within the network.
- Usually, the UEs that are handover to Neighbouring (less loaded cells) are those that are located at the edge of the high loaded cell.

Handover Reasons

User Speed


- The frequency of Handovers is proportional to the UE's speed and the size of the cell.
- To avoid frequent and unnecessary Handovers, UEs with high motion speed may be handed over from micro cells to macro cells.
- In the same way, UEs moving slowly or not at all, can be handed over from macro cells to micro cells.

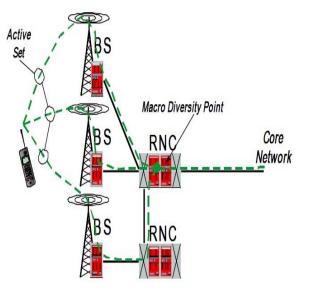
Handover Types Hard Handover


57

During a Hard Handover, the old connection with the old Cell is released before the new connection with the new Cell is established ("break-before-make" connection).

Handover Types Soft Handover (and Macro-Diversity)

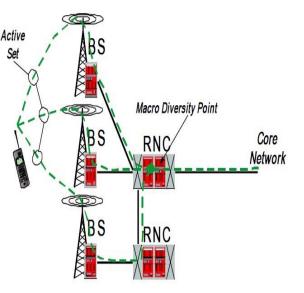
- Soft Handover refers to the process that allows a Mobile Station to be served simultaneously by several cells (BSs).
- □ This feature is possible in WDMA because all Cells use the same frequencies → Note that the channels in WCDMA are separated only by the use of Spreading Codes.
- With Soft Handover several radio links are active at the same time providing a "Macrodiversity" gain on the received signal (or frame).



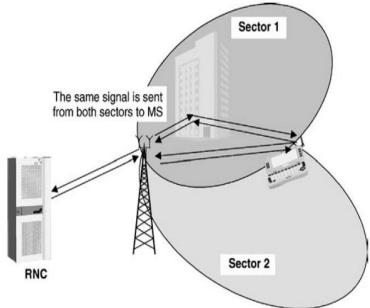
Handover Types

59

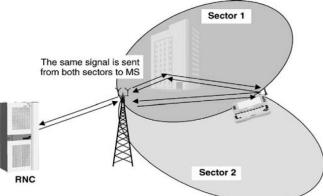
Soft Handover in the Downlink (Soft Combining)


- □ In the Downlink, the MS can combine the different received (de-spreaded) signals to increase the reliability of demodulation → This is termed as Soft Combining Gain.
 - By combining the signals from different links, a stronger signal can be generated thus Increasing the Received SIR, which reduces the transmit power requirements (even when compared to the power required over the best link only)

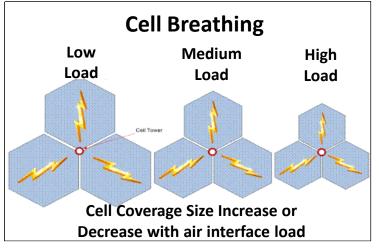
Handover Types


Soft Handover in the Uplink (Selective Combining)

- On the Uplink, since the Cells in the Soft Handover do not belong to the same Node-B, it is <u>Not</u> possible to combine the signals before they are demodulated.
- Instead, all the frames are sent to the RNC, which decides which one to use (i.e., the first frame which is received correctly is chosen).
- □ This process still provides a gain compared to a single link, since it increases the probability of having at least one link without error → This is termed as "Selective Combining" Gain


Handover Types Softer Handover

- Softer Handover is a special case of Soft Handover where the radio links that are added and removed belong to the same Node-B (Base Station).
- During Softer Handover, a UE is in the overlapping cell coverage area of two adjacent sectors of the same Node-B.
- The communication between the UE and the Node-B usually takes place concurrently via two connections, one for each sector separately → From the UE's point of view this is just another Soft Handover case.



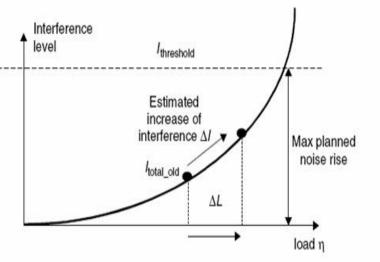
Handover Types Softer Handover

- The different of Softer and Soft Handover is only meaningful to the Network (i.e., in the Uplink), as a Softer Handover is an internal procedure for a Node-B.
- □ The uplink Softer Handover branches can be combined within the Node-B, similarly to the case of the UE, resulting in a stronger signal and thus increasing the reliability of demodulation → "Soft Combining" Gain can be achieved at the Node-B

- 63
 - If the air interface loading (i.e., the active connections) is not controlled and allowed to increase excessively:
 - The Coverage area of the cell will be reduced below the planned values (due to the high interference that will be caused – causing the cell breathing phenomenon), and thus
 - The Quality of Service of the existing connections will not be guaranteed, especially for those located on the cell's edge.
 - Before admitting a new UE, Admission Control needs to check that the admittance will not sacrifice the planned coverage area or the Quality of the existing connections.

- 64
 - Admission Control accepts or rejects a request to establish a new connection in the Radio Access Network.
 - It is executed when a new connection is set up or an existing connection needs to be modified/regulated (in case of cell overloading), or during a handover.
 - The Admission Control functionality is located in the RNC where the load information from several cells can be obtained.

- The Admission Control algorithm estimates the load increase that the establishment of the new connection would cause in the Radio Network.
 - This is estimated separately for the uplink and Downlink directions.
- The new connection can be admitted only if both uplink and downlink Admission Control admit it, otherwise it is rejected because of the excessive interference that it would produce in the network.
 - The threshold limits for Admission Control are set by the Network Operator during Radio Network Planning.


- There are two type of strategies for Admission Control:
 - Interference (Power) Based
 - **Throughput Based**

Interference Based Uplink Admission Control

- The interference-based Uplink Admission Control algorithm estimates the increase in the uplink Interference (△/) that will be caused due to a new uplink connection with a UE
 - □ For the estimation of the uplink △/ the uplink load curve is also taken into account, in order to estimate the load factor (△L) that will be caused by adding the UE.
 - ΔL is the load factor of the new connection requested by the UE.

67

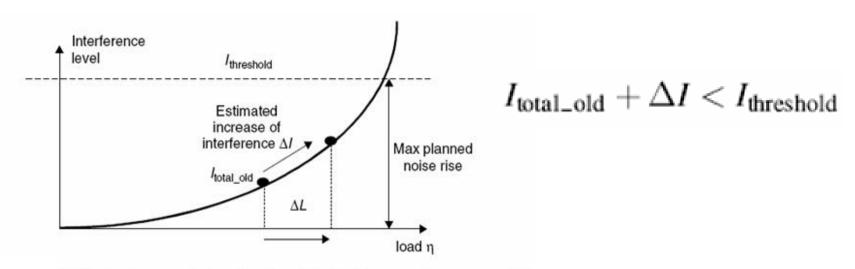
□ Then the new resulting Total Interference level is estimated $(I_{total_old} + \Delta I)$

Uplink load curve and the estimation of the load increase due to a new UE

Interference Based Uplink Admission Control

68

The load factor of the new UE *ΔL*, is the estimated load factor of the new connection and can be obtained as:


$$\Delta L = \frac{1}{1 + \frac{W}{\upsilon \cdot E_b / N_0 \cdot R}}$$

- W is the Chip Rate (in case of WCDMA is 3.84 Mcps),
- **R** is the **Bit Rate** of the **connection requested** by the new UE,
- Eb/No (or Target SIR) is the "assumed" required Eb/No (i.e., the Target SIR required to be received by the BS for decoding the signal correctly) of the new connection
- u is the "assumed" voice/data activity of the new connection (typically takes values between 0.4 0.6; meaning that compared to the total session time only during the 40 60% of the time, data or voice is actually sent in the channel).

Interference Based Uplink Admission Control

69

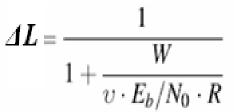
- If the new resulting Total Interference level (I_{total_old} + ΔI) is lower than the threshold value (I_{threshold}) then the new UE will be admitted in the uplink, otherwise it will be rejected.
 - The threshold value I_{threshold} is the maximum uplink interference that is allowed to be introduced in the system and can be set by the Network Operator during Radio Network Planning.

Uplink load curve and the estimation of the load increase due to a new UE

Interference Based Downlink Admission Control

- The downlink Admission Control strategy is similar as in the uplink → The UE is <u>not</u> admitted if the new total Downlink Transmission Power used by the NodeB ($P_{total_old} + \Delta P_{total}$) exceeds the predefined Target value ($P_{threshold}$): $P_{total_old} + \Delta P_{total} > P_{threshold}$
 - The threshold value P_{threshold} is set by the Network Operator during Radio Network Planning and specifies the total Downlink Power allowed to be used by the BS.
 - Note that **△P**_{total} includes two values:

- The downlink transmission power that will be devoted for the new UE requesting the connection, and also
- The Additional downlink transmission power that will be devoted for the existing UEs in the system, due to the additional interference cause for the new connection of the new UE.


Interference Based Downlink Admission Control

- The increase (△P_{total}) in the BS's downlink transmission power can be estimated based on a priori knowledge of:
 - The Required Target SIR (with which the MS should receive the signal for decoding it correctly) of the new connection,
 - The Requested Bit Rate of the connection, and
 - The CPICH_{Ec/No} Pilot Report the UE sent to the RNC.
 - The CPICH_{EC/No} Pilot Report implicitly provides information to the RNC regarding the path loss towards the new UE as well as the interference level experienced by the UE.

Throughput Based Downlink and Uplink Admission Control

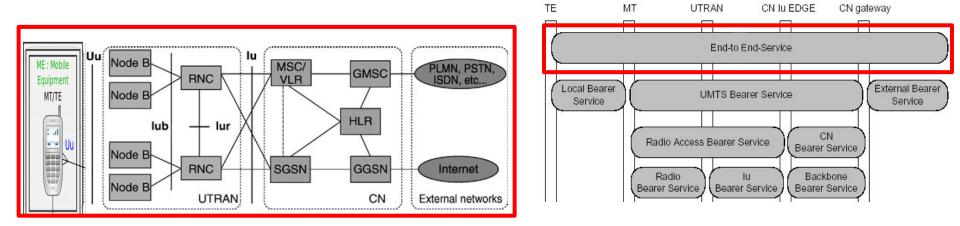
- In the throughput-based admission control strategy, the new UE requesting connection is admitted if:
 - □ In the Uplink case: $\eta_{UL} + \Delta L < \eta_{UL_threshold}$
 - In the Downlink case $\eta_{\rm DL} + \Delta L < \eta_{\rm DL}_{-\rm threshold}$
 - Where *η_{UL}* and *η_{DL}* are the Uplink and Downlink load factors before the admittance of the new connection.
 - The load factor of the new UE ΔL is calculated using the same formula used by the previous approach
 1
- W is the Chip Rate,

- **R** is the **Bit Rate** of the **connection requested** by the new UE,
- Eb/No is the "assumed" required Eb/No (for decoding the signal correctly) of the new connection
- *u* is the *assumed voice activity* of the *new connection* (typically takes values between 0.4 0.6).

Ερωτήσεις;

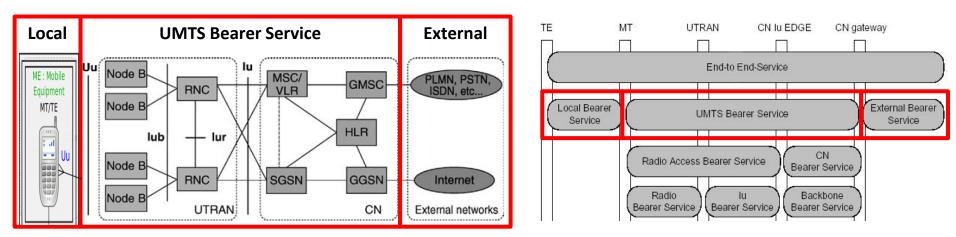
Wideband – Code Division Multiple Access (W-CDMA)

- In order for the UMTS network to support a variety of multimedia mobile services at high data rates in the radio access layer resulted in the choice of Code Division Multiple Access (CDMA) as the multiple access scheme used in 3rd Generation (3G) networks.
 - W-CDMA is a 3G standard based on CDMA that increases the throughput of data transmission of CDMA by using a wider 5MHz carrier bandwidth (CDMA uses a carrier bandwidth of 1.25 MHz)
 - Hence the name W (Wideband) CDMA.

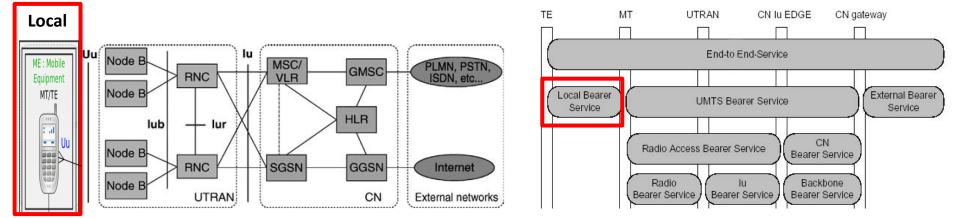

Wideband – Code Division Multiple Access (W-CDMA)

WCDMA, with data rates up to 2Mbits has the capacity to easily handle bandwidth-intensive applications such as video, data, and image transmission necessary for mobile internet services

- Note that 2Mbits is achieved with UMTS Release 99
- Much higher data rates achieved with latest releases of UMTS technologies based on WCDMA like HSPA (up to 14.4 Mbps) and HSPA+ (up to 42Mbps)


End-to-End Service QoS Provision

- 77
- If we think of an End-to-End Service between users, the used service sets its requirements concerning QoS and these QoS requirements must be met everywhere in the network.
 - E.g., Minimum bit rate, Maximum delay allowed, Guaranteed bit rate, Maximum bit error rate allowed, etc.

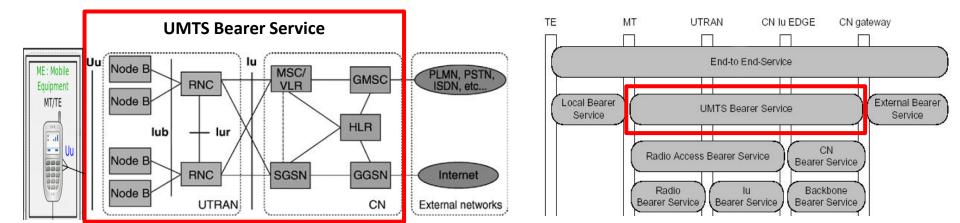

End-to-End Service QoS Provision

- 78
- The various parts of the UMTS network contribute to fulfilling the QoS requirements of the services in different ways.
- Specifically, the End-to-End Service QoS provision have been divided into three entities:
 - Local Bearer Service (between TE and MT),
 - UMTS Bearer Service (between MT and CN) and
 - External Bearer Service (between CN and other networks).

End-to-End Service QoS Provision Local Bearer Service

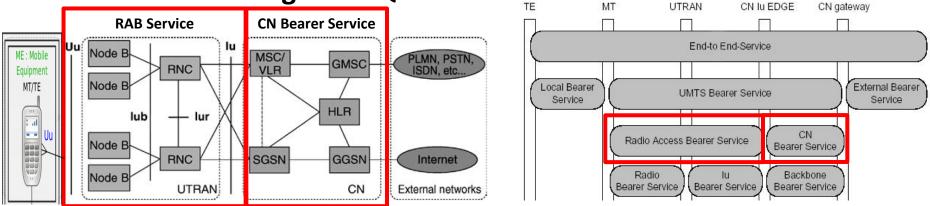
- The Local Bearer service contains the QoS mechanisms on how the end-user service is mapped between the Mobile Termination (MT) and Terminal Equipment (TE) (e.g., how the service will be displayed on the TE based on its capabilities).
- MT is the part of the UE that controls incoming and outgoing radio transmission (i.e., from and to the network; Uu Interface) and adapts the Terminal Equipment capabilities to those of incoming radio transmission.

End-to-End Service QoS Provision Local Bearer Service


For example, if we have two Terminal Equipments (TE):

- One TE that has a numeric keypad and limited screen size with fixed character amount, and
- One TE that supports java, thus utilizes more flexible user interface alternatives like colour screen, full keypad and more powerful applications,

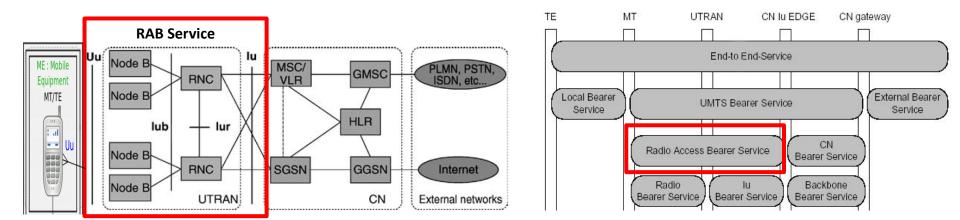
and we are using both of them to browse on the internet on the same site, the quality of the webpage displayed on the screen of the second TE will be better (with more color, and pictures) even though we are browsing the same webpage.


End-to-End Service QoS Provision UMTS Bearer Service

- □ The UMTS Bearer Service contains the QoS mechanisms to guarantee the QoS over the UMTS network → Both in the UTRAN and the CN.
- However, within the UMTS network, the QoS handling in the UTRAN is different and more complex than in the CN.
- Thus UMTS Bearer Service is further divided into Radio Access Bearer Service and CN Bearer Service.

End-to-End Service QoS Provision UMTS Bearer Service

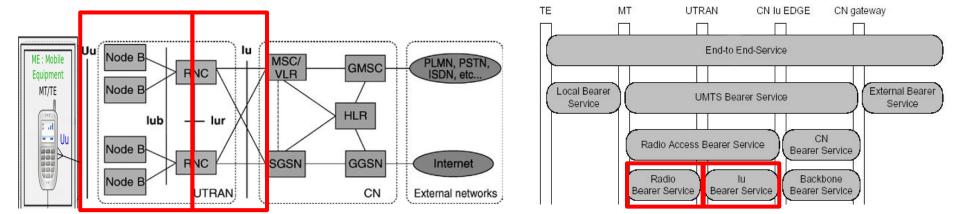
- This division between Radio Access Bearer (RAB) Service and CN Bearer Service is required for the following reason:
 - The CN Bearer Service is quite constant in nature since the Backbone Bearer Service providing physical connections is also stable.
 - On the other hand, within UTRAN, the Radio Access Bearer (RAB) Service is more complicated as it experiences more changes as a function of time due to the mobility of the UE and this sets different challenges for QoS.



End-to-End Service QoS Provision UMTS Bearer Service – Radio Access Bearer

Thus, the main task of UTRAN is to create and maintain Radio Access Bearers (RABs) for communication between the User Equipment (UE) and the Core Network (CN) so that End-to-End QoS requirements are fulfilled in all respects.

83

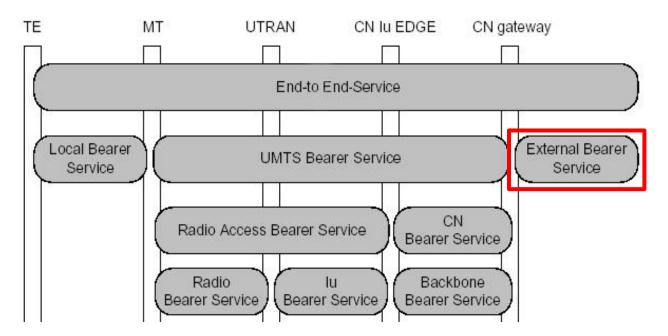

With RAB, the CN elements are given an "illusion" about a fixed communication path to the UE, thus releasing them from the need to take care of radio communication aspects.

End-to-End Service QoS Provision UMTS Bearer Service – Radio Access Bearer

The Radio Access Bearer (RAB) Service is further divided into:

- In bearer Service for guaranteeing the QoS between the RNC and the CN (establishment of In Bearer)
- Radio Bearer Service for guaranteeing the QoS over the radio path (i.e., between the RNC and the MT, by establishing a Radio Bearer).

End-to-End Service QoS Provision UMTS Bearer Service


Question: Why both Radio Bearer and Iu Bearer need to exist in the system?

Answer:

- These two Bearers (Radio Bearer & lu Bearer) exist in the system because lu Bearer is more stable in nature than the Radio Bearer.
- This is due to the fact that RNC must reconfigure the Radio Bearer every time the UE moves from one Cell to another, while the lu Bearer remains stable. The lu Bearer will need to be reconfigured, only when the UE moves into a Cell that belongs to another RNC.

End-to-End Service QoS Provision External Bearer Service

- Since UMTS network attaches itself to external networks, the end-user QoS must be handled towards the other networks too.
- This is taken care by the External Bearer Service.

Open Loop Power Control

- The UE gains access to the Network by performing a Connection Setup request using the RACH.
 - The UE measures the downlink power level of CPICH (CPICH_RSCP - Received Signal Code Power of CPICH) and the initial RACH power level is set with the proper margin (constant value) due to the Open Loop inaccuracy.
- The UE calculates the power for the first RACH preamble as:

Preamble_Initial_Power = Primary CPICH DL TX power - CPICH_RSCP

+ UL interference + constant value

The value for the **CPICH_RSCP** is measured **by the UE**. All other parameters (Primary CPICH DL TX power, UL interference, constant value) are being received on **System Information** which is **broadcasted in the cell**.

Open Loop Power Control

88

When establishing the first DPCCH (Dedicated Physical Control Channel) the UE will start transmitting at a power level according to:

DPCCH_Initial_power = DPCCH_Power_offset - CPICH_RSCP

DPCCH_Power_offset value is received by the UE from UTRAN on various signalling messages.
 CPICH_RSCP is measured by the UE

Note that the CPICH_RSCP is subtracted from the DPCCH_Power_offset → Thus the better the downlink channel conditions measured by the UE, the lower will be the uplink DPCCH_Initial_power used by the UE.

Open Loop Power Control

89

The DPCCH_Power_offset is estimated by UTRAN (more specifically by the RNC) by using the following formula DPCCH Power offset = CPICH Tx power + UL Interference +

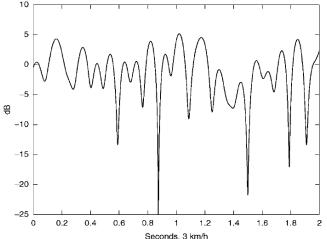
 $SIR_{DPCCH} - IOlog (SF_{DPDCH})$ Processing Gain

- CPICH_Tx_power is the transmission power used by the BS on the CPICH and it is fixed.
- UL_Interference is the uplink Interference caused in the cell
- SIR_{DPCCH} is the initial Target SIR produced by the Admission Control (AC) for that particular connection (based on the QoS requirements of the connection)

SF_{DPDCH} is the **Spreading Factor** of the corresponding DPDCH (Dedicated Physical Data Channel). \rightarrow **10log(SF**_{DPDCH}) is the **Processing Gain that can be achieved during Despreading.**

Open Loop Power Control Downlink (DL)

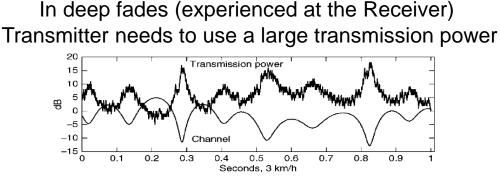
- In Downlink, the Open Loop Power Control is used to set the initial power of the Downlink channels (i.e., from the BS to the UE) based on the Downlink measurement reports, received by the RNC, from the UE.
- A possible algorithm for calculating the initial Downlink power value of the DPDCH is set up is

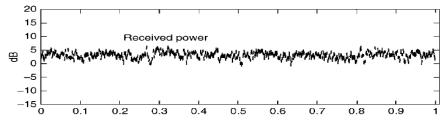

$$P_{Tx}^{Initial} = \frac{R \bullet (Eb / No)_{DL}}{W} \bullet \left(\frac{CPICH _Tx _power}{(Ec / No)_{CPICH}} - \alpha \bullet Ptx _Total\right)$$

R: Is the **Bit Rate** that the Channel will support

- **W**: Is the **Chip Rate supported** (i.e., in the case of WCDMA this is 3.84Mcps)
- (Eb/No)_{DL}: Denotes the value that the signal's energy per bit (Eb) divided by the interference and noise power density (No) should have for achieving a certain BER so as to satisfy the required QoS for the specific service (i.e., the SNIR required)
- **(Ec/No)**_{CPICH}: Is reported by the UE to the Node-B and indicates the downlink channel conditions
- α: Is the DL Orthogonality factor (If a = 1 then we have perfect Orthogonality between different signals)
- Ptx_Total: Is the total carrier power used by the Node-B. This is measured at the Node-B and reported to the RNC.

Closed Loop Power Control

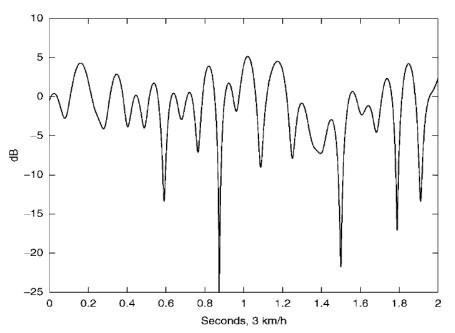

- 91
- Closed Loop Power Control is used for adjusting the transmission power once the radio connection has been established
- It has to ensure that the transmission power used by the Transmitter will be that much so that the signal will be received by the Receiver with the requested Target SIR.
- Thus, its main target it's to adjust the Transmitter's signal transmission power according to the rapid changes in the radio signal strength experienced by the Receiver (due to signal pathloss, fast fading, etc.).
 - The weaker the signal experienced by the Receiver, the more power will be used by the Transmitter in order for the signal to reach the Receiver with the Target SIR
- Hence, it should be fast enough to respond to these changes.


Radio Signal Strength Experienced by the Receiver during the connection (due to pathloss, fast fading, etc.)

Inner Loop Power Control

- 92
- While this fading removal is highly desirable from the Receiver point of view, it comes at the expense of increased average transmit power at the Transmitting end.
- This means for example that for a channel in a deep fade, will require the Transmitter (i.e., the Mobile Station) to use a large transmission power to send its signal to the Base Station (so as the signal to be received with the Target SIR required at the Receiver), and thus it will cause increased interference to other cells.

Fading is removed at the Receiver. Received Signal Strength ≈Target SIR


Inner Loop Power Control

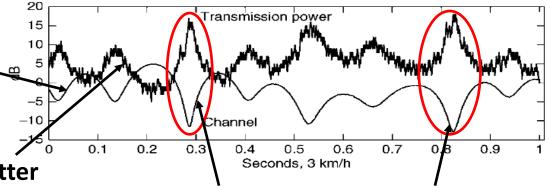
93

Fast Fading

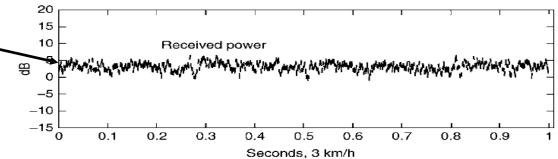
The following figure shows a typical fast fading pattern as would be discerned for the arriving signal energy at a particular delay position as the receiver moves.

We see that the received signal power can drop considerably (by 20–30 dB) when phase cancellation of multipath reflections occurs

Fast Rayleigh fading as caused by multipath propagation


Inner Loop Power Control

94


Channel Quality experienced at the Receiver (e.g., BS) due to pathloss, fast fading, etc.

Signal Power used by the Transmitter (e.g., MS) to send the signal to the Receiver (e.g., BS) is adjusted (by the Inner Loop Power Control) according to the Channel Conditions experienced at the Receiver (BS)

With Inner Loop Power Control Fast Fading is compensated and Signal Strength (SIR) received at the Receiver (BS) meets the Target SIR requirements

Deep fades in the Channel Quality experienced at the Receiver (BS) → Transmitter (MS) will use a large transmission power so as the signal to be received with the required Target SIR at the Receiver (MS)

Gain of Fast Power Control

95

- The Target SIR values as well as the Required Relative transmission powers, with and without fast power control are shown in Table 9.1 and Table 9.2.
- In Tables 9.1 and 9.2 the negative gains at 50 km/h indicate that an ideal slow power control would give better performance than the realistic fast power control. The negative gains are due to:
 - Inaccuracies in the SIR estimation,
 - Power control signalling errors,
 - The delay in the power control loop.

Table 9.1.	Target SIR values with and without fast power control		
	Slow power control (dB)	Fast 1.5 kHz power control (dB)	Gain from fast power control (dB)
ITU Pedestrian A 3 km/h	11.3	5.5	5.8
ITU Vehicular A 3 km/h	8.5	6.7	1.8
ITU Vehicular A 50 km/h	6.8	7.3	-0.5

Table 9.2. Required relative transmission powers with and without fast power control

	Slow power control (dB)	Fast 1.5 kHz power control (dB)	Gain from fast power control (dB)
ITU Pedestrian A 3 km/h	11.3	7.7	3.6
ITU Vehicular A 3 km/h	8.5	7.5	1.0
ITU Vehicular A 50 km/h	6.8	7.6	-0.8

Handover Control

96

Type of Handovers:

- Intra-system Handovers (in the same system):
 - Intra-frequency Handover: The carrier frequency of the new radio access in the new Cell is the same with the old carrier frequency in the old Cell to which the UE was connected.

CN

BSC

RNC

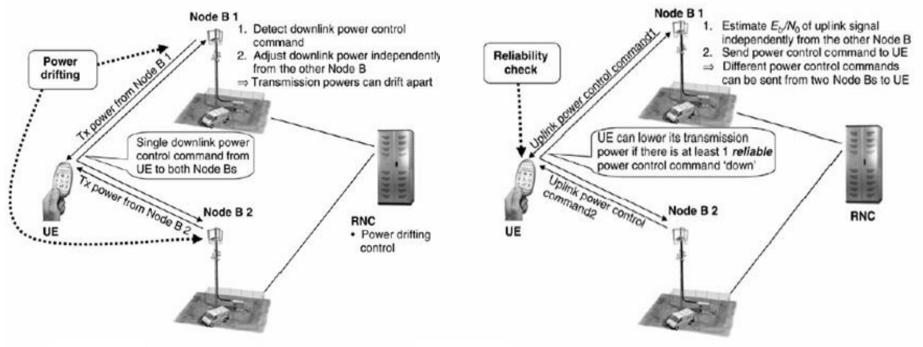
Inter-System

Intra-System

Inter-System

WCDMA TDD

GSM900/1800


WCDMA FDD

- Soft Handover, Hard Handover can be used
- Inter-frequency Handover: The carrier frequency of the new radio access in the new Cell is different from the old carrier frequency in the old Cell to which the UE was connected.
 - Only Hard Handover can be used
- Inter-system Handovers:
 - □ Handovers **between different Radio Access Technologies** (RATs).
 - For example handover between UMTS and GSM, or between WCDMA FDD and WCDMA TDD.

Power Control in Soft Handover

97

- Fast power control in soft handover has two major issues that are different from the single-link case:
 - Power Drifting in the Node B powers in the downlink, and
 - **Reliable detection** of the uplink power control commands in the UE.

Downlink power drifting in soft handover

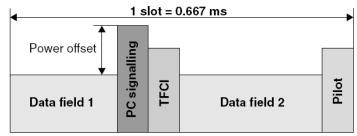
Reliability check of the uplink power control commands in UE in soft handover

Power Drifting

- 98
- UE sends a single command to control the downlink transmission powers; this is received by all Node Bs in the Active set.
 - The Node-Bs detect the command independently, since the power control commands cannot be combined in RNC because it would cause too much delay and signalling in the network.
- Due to signalling errors in the air interface, the Node-Bs may detect this power control command in a different way.
 - It is possible that one of the Node-Bs lowers its transmission power to that UE, while the other Node-B increases its transmission power.
 - This behaviour leads to a situation where the downlink powers start drifting apart

Power Drifting

- Power drifting is not desirable, since it mostly degrades the downlink soft handover performance.
- **Solution**:
 - **RNC** can receive information from the Node Bs concerning the transmission power levels of the soft handover connections. These levels are averaged over a number of power control commands, e.g. over 500 ms or equivalently over 750 power control commands. Based on those measurements, RNC can send a reference value for the downlink transmission powers to the Node Bs. The soft handover Node Bs use that reference value in their downlink power control for that connection to reduce the power drifting. The idea is that a small correction is periodically performed towards the reference power. The size of this correction is proportional to the difference between the actual transmitted power and the reference power. This method will reduce the amount of power drifting.

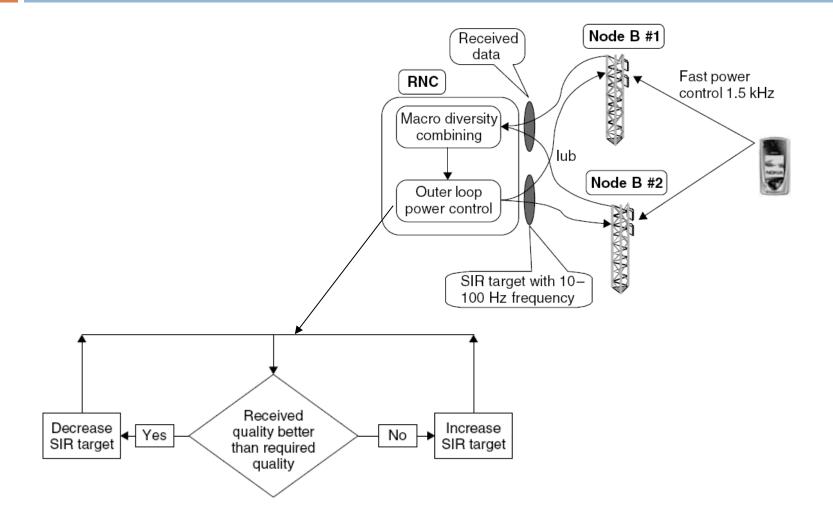

Reliability of Uplink Power Control Commands

- All the Node-Bs in the active set send an independent power control command to the UEs to control the uplink transmission power.
- It is enough if one of the Node Bs in the active set receives the uplink signal correctly.
 - Therefore, the UE can lower its transmission power if one of the Node Bs sends a power-down command.
- Maximal ratio combining can be applied to the data bits in soft handover in the UE, because the same data is sent from all soft handover Node Bs, but not to the power control bits because they contain different information from each of the Node Bs.
 - Therefore, the reliability of the power control bits is not as good as for the data bits, and a threshold in the UE is used to check the reliability of the power control commands.

Reliability of Uplink Power Control Commands

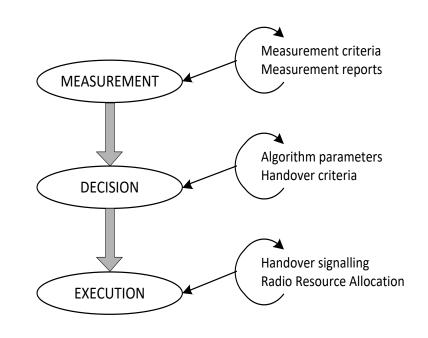
101

Very unreliable power control commands should be discarded because they are corrupted by interference.



Solution:

Ire 9.8. Power offset for improving downlink signalling quality

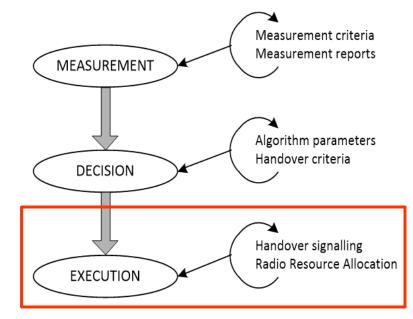

- The power control signalling quality can be improved by setting a higher power for the dedicated physical control channel (DPCCH) than for the dedicated physical data channel (DPDCH) in the downlink if the UE is in soft handover. This power offset between DPCCH and DPDCH can be different for different DPCCH fields: power control bits, pilot bits and TFCI.
- The reduction of the UE transmission power is typically up to 0.5 dB with power offsets.

Power Control in Soft Handover

Handover Process

- The basic handover process consists of three main phases
 - Measurement Phase
 - Decision Phase
 - Execution of the Handover

- For handover purposes, during the connection the UE continuously measures the CPICH signal strength of the Current and Neighboring Cells and reports the results to its Serving RNC.
- These reports constitutes the basic input to the handover algorithm.
- Note that the CPICH signal strength of the radio channel may vary drastically due to fast fading and signal path loss, resulting from the cell environment and user mobility.
 - This could cause frequent and unnecessary handovers, if in the measurements the effect of fast fading is considered
 - Therefore cell measurements are filtered in the UE in order to average out the effect of fast fading (remember that fast fading effect is compensated (εξουδετερώνεται) by Fast power control).

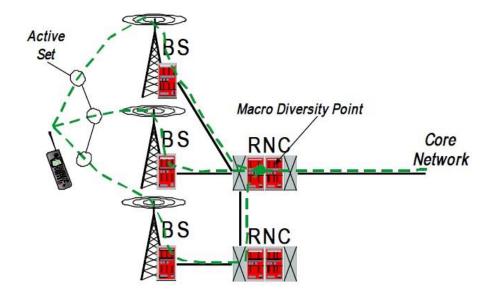

- - The comparison of the values included in the handover measurement report received from the UE with the Handover Criteria (E.g., Handover thresholds used).
 - The assessment of the overall QoS of the connection and its comparison with the requested QoS attributes (so as to indicate if the handover is really required to be performed immediately)
- **Depending on the outcome** of this comparison, the **handover** procedure may or may not be Triggered (i.e., if the QoS of the connection with the Old cell meets the QoS criteria, the RNC may decide to postpone the handover if the Target cell is overloaded).

Handover Process

106

Execution of the Handover

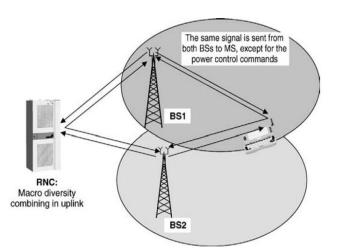
- The required signaling is performed in order to inform the UE about the handover decision
- The required resources in the new cell are allocated.
- The resources used in the old cell are released

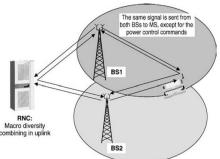


Handover Types Soft Handover (and Macro-Diversity)

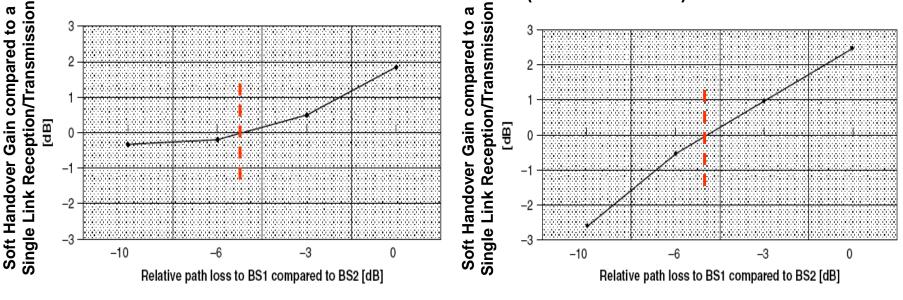
Question: What is the different between Soft Handover (SHO) and Macro-Diversity?

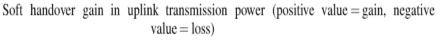
107


Answer: Soft Handover is the procedure. Once it is performed, the result is a Macro-diversity situation.


The typical Handover threshold values used by the Soft Handover Algorithm for adding and dropping BSs from the Active Set (includes a List of BSs having a connection with the UE) in order to achieve a macrodiversity gain are shown below:

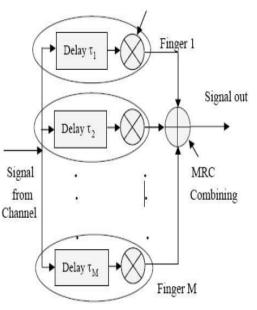
Туріса	ıl handover parameters
Window_add	Window_drop
1–3 dB	2-5 dB


- The gain of macro-diversity is highest when the path losses of the Soft Handover branches (i.e., the connections with the different Base Stations) are about equal (i.e., the CPICH signal strength received from the different Base Stations taking part in the Soft Handover are about equal).
- If one of the participating Base Stations, taking part in the Soft Handover process, is clearly stronger than others, then macro-diversity cannot provide much gain (More specifically in this case Soft Handover will make things worse more interference will be caused due to the bad links)
- If the relative path loss difference between the participating BSs is very large, the Soft Handover is not beneficial as this can cause for example an increase in the UE Transmission Power (Therefore Soft Handover should be used with care).



Handover Types Soft Handover (and Macro-

Example: The figures below show the simulation results of 8 kbps speech in an ITU Pedestrian A channel, at 3 km/h, assuming that the UE is in Soft Handover with two Node-Bs (BS1 and BS2)


110

Both for the Uplink and Downlink connections, if the signal strength received from BS₂ is weaker than ~5dB (or more) then Soft Handover is not beneficial

Macro-diversity in the Downlink (From BSs to MS)

- In the Downlink, the macro-diversity components (i.e., the signals received by the different BSs taking part in the Soft Handover process) are received in the Mobile Station by means of RAKE processing.
- RAKE Processing: The macro-diversity components are determined (by the RAKE receiver fingers), differentiated and summed up from the Mobile Station RAKE, combined into a stronger signal (i.e., increases the received SIR; Soft Combining).
- Thus, the more RAKE fingers the Mobile Station has, the better receiving performance it has, providing that all fingers find a separate diversity component.

Macro-diversity in the Uplink (From MS to BSs)

- In the uplink, the macro-diversity is performed differently (Selective Combining).
- The frame is transmitted from the MS to all the BSs included in the Active Set.
- The more the Base Stations that can receive the frame from the Mobile Station, the better the probability that some of them will receive it successfully.
 - Therefore the UE transmission power level can be lower if macro-diversity is used in the Uplink.

Soft Handover Benefits:

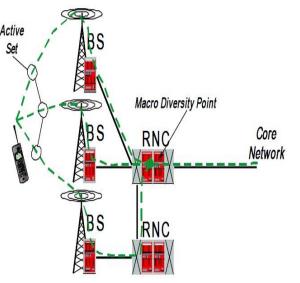
- Mobile Stations at the cell edges can collect more signal energy if it is in Soft Handover compared to having only a single link to a Base Station → It increases the reliability of the transmission
- Reduces the transmit power requirement of each link used (both at the Base Station and at the Mobile Station) → Reduces the overall uplink and downlink interference levels caused in the Networks
- Mobile Stations at the boundary among several cells uses the minimum transmit power on either link → Saves Mobile Station's battery.
- If a Mobile Station is in Soft Handover, the connection is not totally lost if one branch gets shadowed.

Soft Handover Drawbacks (mostly in the downlink):

- Since information must be sent over multiple links, that repetition decreases the efficiency of resource utilization (i.e., channels).
- More transmitted signals may mean more energy in the air, which means more interference to the radio environment in the downlink direction.
- The control procedure in the UTRAN, has to be very clever in order to meet the conflicting demands of mobility and low interference levels. → Soft Handover branches should be added to a connection only when the estimated resulting total interference level is less that it would be without Soft Handover.

Macro-diversity in the Downlink (From BSs to MS)

- However there is a tradeoff, from the Network point of view.
 - Having many macro-diversity components received by the MS might sometimes decreases the Network's performance.
- For example, even though that every new signal transmission (i.e., each macro-diversity component) can increase the downlink transmission performance of the network (as less transmission power will be required by each Base Station), if too many Base Stations are used in the Soft Handover procedure, the downlink interference levels in the air interface will increase instead of decrease and thus converse the usefulness of the Soft Handover.


Macro-diversity in the Uplink (From MS to BSs)

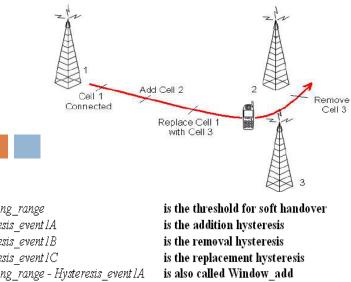
- In the uplink, the effects of macro-diversity are only positive, as the more the Base Stations that can receive the signal from the Mobile Station, the better the probability that some of them will receive it successfully.
 - Therefore the UE transmission power level can be lower if macro-diversity is used in the Uplink.
- Also macro-diversity in the uplink does not generate more transmissions or interference, as the same signal will be received by all the Base Stations included in the Active Set.

Handover Types Soft Handover (Soft and Selective Combining)

 Soft and Selective Combining Gain (Achieved in Macro-diversity situation)

- The received Signal to Interference ratio (SIR) can be increased when the MS is in Soft Handover.
- If the Received SIR increases (at the Receiver), means that the transmit power (at the Transmitter) can be decreased → Reduce interference (and thus increase capacity) and Save Battery (in case the Transmitter is the MS).

Handover Process Description

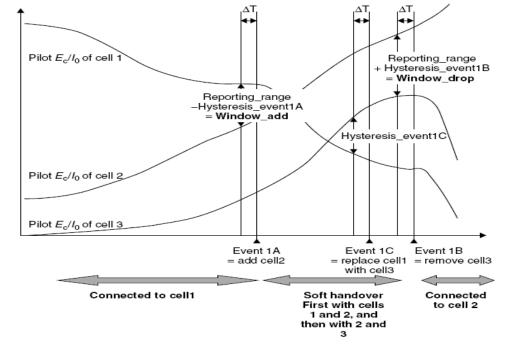

- The Handover procedure is composed of a number of single functions:
- □ Handover Measurements (by the UE) → CPICH Ec/No measurements of the set of cells monitored
- □ Filtering of Measurements (by the UE) → So as to average out the effect of fast fading.
- Reporting of Measurement results (the UE reports to the RNC)
- □ The **Handover Algorithm is executed** (in the RNC)
 - □ If Active Set size = 1 then Hard Handover will be performed.
 - If Active Set size > 1 then Soft Handover will be performed.
- Execution of Handover (Based on the decision taken by the Handover Algorithm running in the RNC)

Handover Process Description

- Active set: List of cells having a connection with the User Equipment (UE).
 - In case of Hard Handover, the Active Set size is equal to 1. This is due to the fact that during Hard Handover the mobile UE can have radio links only with one Base Station.
 - In case of the Soft Handover the Active Set size usually varies from 2 to 3.
- Monitored set: List of (Neighbouring) cells whose Common Pilot channel (CPICH) signal quality is continuously measured but not strong enough to be added to the Active Set.

Handover Process Description

- The handover decision making is based on a comparison made between an observed value (i.e., the measured CPICH Ec/No of the Serving and Neighboring cells) and a predetermined threshold, where the threshold value is typically chosen in a manner so as to maximize the system capacity.
- Based on the CPICH Ec/No measurements of the set of cells Monitored, the Handover Algorithm (running in the RNC) decides which of the three basic actions to perform; it is possible to Add, Remove or Replace a Node-B in the Active cell.
- In the case where the Active Set size is set equal to 1, the UE can have radio link connections only with one Node B → Thus only Hard Handover can be performed.
 - That means that during the movement of the UE from one Cell to another, only the *Replacement action* can be performed.

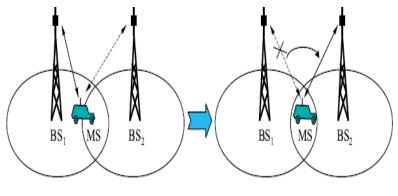

- Reporting range

121

- Hysteresis event IA
- Hysteresis event IB
- -Hysteresis event1C
- Reporting range Hysteresis event IA
- Reporting range + Hysteresis event IB
- $-\Delta T$
- Best Pilot Ec/Io
- Worst Old Pilot Ec/Io
- Best candidate Pilot Ec/Io
- Pilot Ec/Io

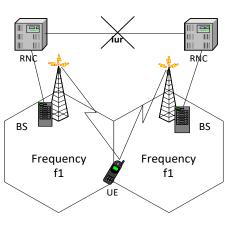
is also called Window drop is the time to trigger is the strongest measured cell in the Active Set

is the weakest measured cell in the Active Set is the strongest measured cell in the Monitored Set is the measured and filtered quantity.


General scheme of the WCDMA soft handover algorithm

- Best_candidate_Pilot_Ec/lo > Best_Pilot_Ec/lo (Reporting_range *Hysteresis_event1A*) for a period of ΔT and the Active Set is not full, the cell is added to the Active Set. This event is called Event 1A or *Radio Link Addition*.
- If the Active Set is full and Best candidate Pilot Ec/lo > Worst Old Pilot Ec/lo + Hysteresis_event1C for a period of ΔT , then the weakest cell in the Active Set is replaced by the strongest candidate cell (i.e., the strongest cell in the Monitored Set). This event is called Event 1C or Combined Radio Link Addition and Removal. In the example shown above, the maximum size of the Active Set is assumed to be two.
 - Worst Old Pilot Ec/lo < Best_Pilot_Ec/lo (Reporting range *Hysteresis_event1B*) for a period of ΔT , then the cell is removed from the Active Set. This event is called Event 1B or Radio Link Removal.

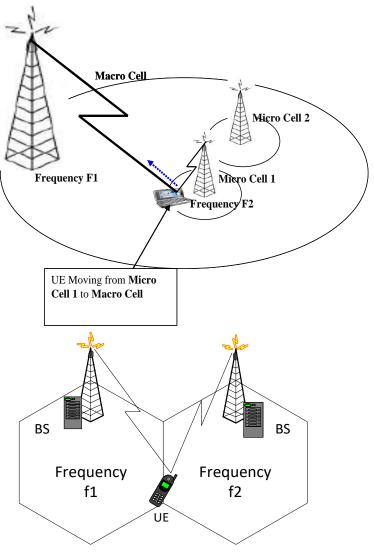
Handover Types Hard Handover


122

During a Hard Handover, the old connection with the old Cell is released before the new connection with the new Cell is established ("break-before-make" connection).

- Intra-frequency Hard Handover
 - The new carrier frequency, to which the UE is accessed after the handover procedure is the same as the original carrier frequency but no network support for Soft Handover exists.

This is due to the lack of direct communication (lur interface) between the two RNCs controlling the BSs.



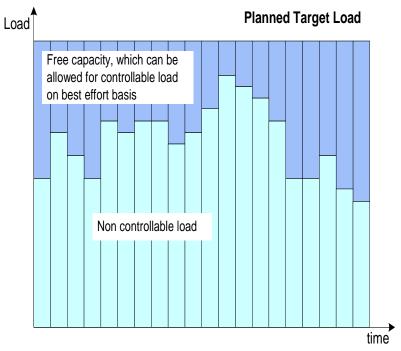
Handover Types Hard Handover

123

Inter-frequency Hard Handover

- The carrier frequency of the new radio access is different from the old carrier frequency to which the UE is connected. For example:
 - Handover in Hierarchical Cell Structure (HCS) between separate cell layers (From Micro to Macro Cells)
 - Handover between different Frequency Carriers

- 124
- One important task of the RRM functionality is to ensure that the system is not overloaded and remains stable.
- If the system is properly planned, and the Admission
 Control and Packet Scheduler work sufficiently well, overload situations should be exceptional.
- However, If overload is encountered, the Load Control functionality returns the system quickly back to the Targeted load (the targeted load is defined by Network Operator during the Radio Network Planning.
- Load Control functionality is mainly located in the RNC but also in the Node-B.


- Possible load control actions, in order to reduce load are listed below:
 - Downlink fast load control: Deny Downlink power-up TPC commands (i.e., commands instructing the BS to increase its downlink transmission power) received from the UE.
 - □ Uplink fast load control: Reduce the Uplink Target SIR used by the uplink Fast Power Control (this will reduce the uplink transmission power used by the UE → Results in uplink interference reduction).

- Handover UEs to another WCDMA carrier or to another system (e.g., GSM/GPRS).
- Decrease Bit Rates of UEs using Real Time services (i.e., decrease from 128kbps to 64kbps streaming video; this will improve the system performance as a tradeoff of a lower quality video).
- Drop low priority calls in a controlled fashion

- 127
 - The first two in this list are fast actions that are carried out within a Node-B (in collaboration with the RNC).
 - These actions can take place within one time slot, i.e. with 1.5 kHz frequency.
 - The other load control actions are typically slower.
 - Packet traffic and bit rates is reduced by the Packet Scheduler.
 - Inter-frequency (handover to another WCDMA carrier) and inter-system handovers (handover to GSM) can also be used for load balancing.

Packet Scheduling (PS)

- The cell's radio resources are shared between Real Time (RT) and Non Real Time (NRT) traffic connections.
 - RT and NRT traffic proportion, fluctuates rapidly during time.
 - A characteristic of the load caused by RT traffic is that it cannot be efficiently controlled.
 Planned Target Load
 - The load caused by RT traffic, is called Non-controllable load.
 - The remaining free capacity from the Planned Target Load can be used for NRT traffic connections.
 - The load caused by the NRT traffic is called Controllable load.

Packet Scheduling (PS)

- 129
 - The main objective of Packet Scheduling is to control the traffic in the network (e.g., by regulating how much data an application is allowed, by giving priority to packets of different services, etc.) and provide the appropriate radio resources for radio connections.
 - **Some functions of the PS are:**
 - Determines the available radio interface resources for Non Real Time radio connections (Controllable Load).
 - Share the available radio interface resources between the Non Real Time radio connections.
 - Decides when a packet transmission is initiated and the Bit Rate to be used.

Packet Scheduling (PS)

- Admission Control and Packet Scheduling both participate in the handling of connections for Non Real Time services.
 - Admission Control takes care of admission and release of connections.
 - Radio resources are not reserved for the whole duration of the connection but only when there is actual data to transmit.
 - Packet Scheduling allocates appropriate radio resources for the duration of a packet call (i.e., for the active data transmission).
- Packet Scheduling is done on a Cell basis.
 - Since asymmetric traffic is supported and the load may vary a lot between Uplink and Downlink, capacity is allocated separately for both directions.